

ANÁLISE DE MANOBRAS PARA COMBOIOS FLUVIAIS

Aluno: Victor Hugo Fagundes Peclat

Orientador: Paulo de Tarso Themistocles Esperança

INTRODUÇÃO

Navegação fluvial;

> Embarcações;

	BALSA	BALSA	BALSA	BALSA	BALSA
	BALSA	BALSA	BALSA	BALSA	BALSA
	BALSA	BALSA	BALSA	BALSA	BALSA
EMP	BALSA	BALSA	BALSA	BALSA	BALSA
	BALSA	BALSA	BALSA	BALSA	BALSA

Quantidade de Balsas	25 unidades
Comprimento Máximo do Comboio	347,36 m
Boca Máxima do Comboio	68,75 m
Calado Carregado Máximo do Empurrador	4,00 m
Calado Carregado Máximo das Balsas	4,50 m

Empurrador com sistema propulsivo convencional

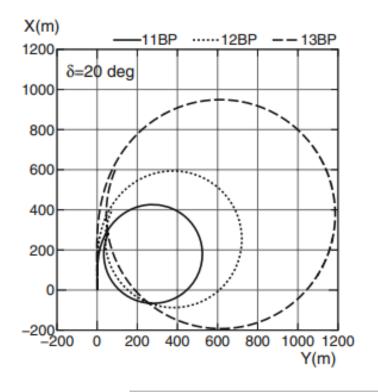
Empurrador com sistema propulsivo azimutal

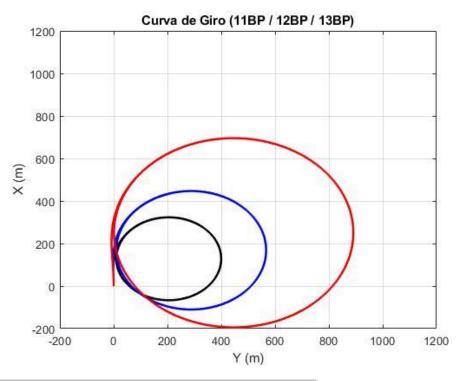
OBJETIVO

Desenvolver e analisar o desempenho de comboios com sistema propulsivo alternativo, composta por barcaças capacitadas para o transporte de petróleo e seus derivados, visando o aprimoramento de sua capacidade manobra, através do uso alternativo do sistema propulsivo azimutal, ao invés da propulsão convencional no empurrador

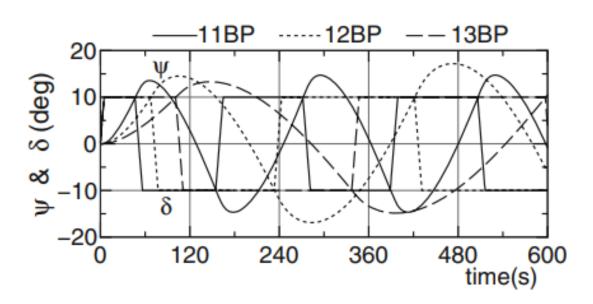
MOTIVAÇÃO

Devido ao meio aquaviário possuir uma ótima relação custo beneficio e as dificuldades da navegação fluvial, faz-se necessário o uso de embarcações capazes de operar com segurança e com a maior quantidade de carga possível.

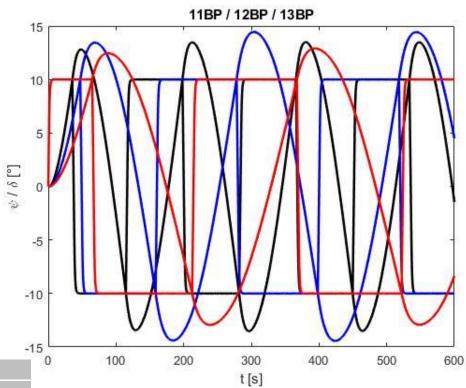




Verificação do modelo matemático para a curva de giro.



Curva de Giro										
Comboio	Koh et al. (2008)			Simulador						
	DT (m)	Av (m)	Tr (m)	DT (m)	Dif	Av (m)	Dif	Tr (m)	Dif	
11BP	516	418	212	391	-24,22%	314	-24,88%	146	-31,13%	
12BP	709	583	290	554	-21,86%	434	-25,56%	205	-29,31%	
13BP	1160	927	455	864	-25,52%	668	-27,94%	293	-35,60%	



Verificação do modelo matemático para a manobra de zigue-zague.

Zigue-Zague										
Comboio	Koh et al. (2008)			Simualdor						
	1° Os	2° Os (-)	TR	1° Os	Dif	2° Os (-)	Dif	TR	Dif	
11BP	3,60	4,70	150,00	2,81	-21,89%	3,44	-26,78%	114,4788	-23,68%	
12BP	4,50	6,90	234,00	3,45	-23,36%	4,40	-36,28%	0,0000	-100,00%	
13BP	3,30	4,90	335,00	2,46	-25,38%	2,94	-39,97%	0,0000	-100,00%	

APLICAÇÃO NA INDÚSTRIA DO PETRÓLEO:

- Aumentar a capacidade manobra de comboios capacitados a operar cargas perigosas (petróleo, derivados de petróleo e gás);
- Com maior manobrabilidade, viabiliza o aumento do número de barcaças acopladas;
- Com maior número de barcaças, resulta em uma maior capacidade de carga e consequentemente, uma redução no custo do transporte daquela carga.

RESULTADOS OBTIDOS:

- Desenvolvimento de um simulador "offline", através de um modelo matemático no domínio do tempo.
- O sistema propulsivo azimutal n\u00e3o apresenta melhora na capacidade de manobra do comboio quando comparado com o convencional no mesmo \u00e1ngulo;
- Sistema azimutal é mais recomendado devido sua capacidade de girar 360° em torno do seu eixo.

TRABALHO FUTURO:

• Implementação do modelo matemático no simulador "full mission".

OBRIGADO!

E-mail: victorpeclat@oceanica.ufrj.br